

EFFECT OF ELASTIC FOUNDATION ON ASYMMETRIC VIBRATION OF POLAR ORTHOTROPIC LINEARLY TAPERED CIRCULAR PLATES

U. S. GUPTA AND A. H. ANSARI

Department of Mathematics, Indian Institute of Technology, Roorkee 247667, India. E-mail: usgptfma@isc.iitr.ernet.in

(Received 13 April 1999, and in final form 4 December 2000)

Asymmetric vibrations of polar orthotropic circular plates of linearly varying thickness resting on an elastic foundation of *Winkler* type are discussed on the basis of the classical plate theory. *Ritz* method has been employed to obtain the natural frequencies of vibration using the functions based upon the static deflection of polar orthotropic plates, which has faster rate of convergence as compared to the polynomial co-ordinate functions. Frequency parameter of the plate with elastically restrained edge conditions are presented for various values of taper parameter, rigidity ratio and foundation parameter. A comparison of the results with those available in the literature obtained by finite element method, receptance method and polynomial co-ordinate functions shows an excellent agreement.

© 2002 Published by Elsevier Science Ltd.

1. INTRODUCTION

Plates of various geometries i.e. circular, annular, rectangular and polygonal, etc of orthotropic material such as fibre-reinforced composites are extensively used in engineering applications due to their high specific stiffness and light weight characteristics. These plates are widely used in modern aerospace technology. Many structural components in aerospace, mechanical and civil engineering are supported on elastic medium. The vibrational characteristics of plates resting on an elastic medium are different from those of the plates supported only on the boundary. The study of the dynamic response of plates resting on an elastic foundation is of great interest in connection with the reinforced concrete pavements of high runways and the foundations of buildings. A number of papers [1–18] have appeared dealing with natural frequencies of plates of uniform/non-uniform thickness, to investigate the effect of elastic foundation. Gupta et al. [4] studied the effect of elastic foundation on axisymmetric vibrations of linearly tapered annular plates using quintic splines technique and that of parabolically tapered annular plates by Chebyshev polynomials. Gupta et al. [7] studied the effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness by Ritz method. In the recent past, the Ritz method has been applied by research workers to study the plate vibration of different shapes and are reported in [19-25]. Laura et al. [9] analyzed the free vibration of a solid circular plate of linearly varying thickness attached to Winkler foundation using the Ritz method. Liew et al. [10] employed the differential quadrature method for studying the Mindlin's plate on Winkler foundation. In addition to these, Shih and Blotter [11], Ji Wang [12], Gupta et al. [13–17], Arul et al. [18] have investigated the

0022-460X/02/\$35.00

Figure 1.

frequencies of vibration of a plate resting on an elastic foundation. All the above papers deal with axisymmetric vibrations. The analysis of the vibration of plates with elastically restrained edges is an important problem in aeronautical and naval structural engineering. In aircraft structures, the individual plates are connected to the other plates or stiffners at their boundaries and thus have elastic restraint at their edges [26–32].

The present paper analyzes the effect of elastic foundation (Winkler type) on asymmetric vibrations of polar orthotropic circular plates of linearly varying thickness using the Ritz method, where basis functions based upon the static deflection for polar orthotropic plates have been used. The present choice of functions provides a good approximation for deflection and frequencies [8].

2. ENERGY EXPRESSION

Consider a thin circular plate of radius *a*, thickness h = h(r), resting on *Winkler* foundation of modulus k_f elastically restrained against rotation and translation. Let (r, θ) be the polar co-ordinates of any point on the neutral surface of the plate, referred to as the centre of the plate or origin (Figure 1).

The maximum kinetic energy of the plate is given by

$$T_{max} = \frac{1}{2} \rho \omega^2 \int_0^a \int_0^{2\pi} h \, w^2 \, r \, \mathrm{d} \, \theta \, \mathrm{d} r, \tag{1}$$

where w is the transverse deflection, ρ the mass density, ω the frequency in rad/s. The maximum strain energy of the plate is given by

$$U_{max} = \frac{1}{2} \int_{0}^{a} \int_{0}^{2\pi} \left[D_{r} \left\{ \left(\frac{\partial^{2} w}{\partial r^{2}} \right)^{2} + 2v_{\theta} \frac{\partial^{2} w}{\partial r^{2}} \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} \right) \right\} + D_{\theta} \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} \right)^{2} + D_{k} \left\{ \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial w}{\partial \theta} \right) \right\}^{2} + k_{f} w^{2} \right] r d\theta dr + \frac{1}{2} ak \int_{0}^{2\pi} w^{2} (a, \theta) d\theta + \frac{1}{2} ak_{\phi} \int_{0}^{2\pi} \left(\frac{\partial w (a, \theta)}{\partial r} \right)^{2} d\theta, \qquad (2)$$

where k and $1/k_{\phi}$ are the translational and rotational rigidities of the springs and

$$D_r(r) = \frac{E_r h^3}{12(1 - v_r v_{\theta})}, \qquad D_{\theta}(r) = \frac{E_{\theta} h^3}{12(1 - v_r v_{\theta})}, \qquad D_k(r) = \frac{G_{r\theta} h^3}{3}$$

3. METHOD OF SOLUTION: RITZ METHOD

Ritz method requires that the functional

$$J(w) = U_{max} - T_{max} = \frac{1}{2} \int_{0}^{a} \int_{0}^{2\pi} \left[D_r \left\{ \left(\frac{\partial^2 w}{\partial r^2} \right)^2 + 2v_{\theta} \frac{\partial^2 w}{\partial r^2} \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) \right\} + D_{\theta} \left(\frac{1}{r} \frac{\partial w}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right)^2 + D_k \left\{ \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial w}{\partial \theta} \right) \right\}^2 + k_f w^2 \right] r \, \mathrm{d}\theta \, \mathrm{d}r + \frac{1}{2} a k \int_{0}^{2\pi} w^2(a, \theta) \, \mathrm{d}\theta + \frac{1}{2} a k_{\phi} \int_{0}^{2\pi} \left(\frac{\partial w(a, \theta)}{\partial r} \right)^2 \, \mathrm{d}\theta - \frac{1}{2} \rho \omega^2 \int_{0}^{a} \int_{0}^{2\pi} h w^2 r \, \mathrm{d}\theta \, \mathrm{d}r$$
(3)

be minimized.

Introducing the non-dimensional variables $\overline{W} = w/a$, R = r/a, we assume the deflection function to be

$$\bar{W} = W_a(R)\cos n\theta = \cos n\theta \sum_{i=0}^m A_i W_i(R) = \cos n\theta \sum_{i=0}^m A_i (1 + \alpha_i R^4 + \beta_i R^{1+p}) R^{2i+n},$$
(4)

where A_i are undetermined coefficients, $p^2 = E_{\theta}/E_r$ and α_i , β_i are unknown constants to be determined from boundary conditions. The present choice of functions is based upon the static deflection for polar orthotropic circular plates. Using non-dimensional variables \overline{W} and R along with the relation (4) the functional J(w) given by equation (3) becomes

$$J(W_a) = \frac{\pi D_{r0}}{2} \left[\int_0^1 \int_0^{2\pi} \left[\left\{ \left(\frac{\partial^2 W_a}{\partial R^2} \right)^2 + 2\nu_\theta \frac{\partial^2 W_a}{\partial R^2} \left(\frac{1}{R} \frac{\partial W_a}{\partial R} - \frac{n^2 W_a}{R^2} \right) \right\} \right] \\ + p^2 \left(\frac{1}{R} \frac{\partial W_a}{\partial R} - \frac{n^2 W_a}{R^2} \right)^2 + n^2 D_{k0} \left\{ \frac{\partial}{\partial R} \left(\frac{W_a}{R} \right) \right\}^2 + K_f W_a^2 \right] R \, \mathrm{d}R \\ + K W_a^2 (1) + K_\phi \left(\frac{\partial W_a(1)}{\partial R} \right)^2 - \Omega^2 \int_0^1 \int_0^{2\pi} (1 - \alpha R) W_a^2 R \, \mathrm{d}R \right],$$
(5)

where $h = h_0 (1 - \alpha R)$ specifies the linear thickness variation, h_0 being the thickness of the plate at the centre, α the taper parameter and

$$D_{r0} = \frac{E_r h_0^3}{12(1 - v_r v_{\theta})}, \qquad D_{k0} = \frac{D_k}{D_{r0}}, \qquad \Omega^2 = \frac{a^4 \omega^2 \rho h_0}{D_{r0}},$$
$$K_f = \frac{a^4 k_f}{D_{r0}}, \qquad K = \frac{a^3 k}{D_{r0}}, \qquad K_{\phi} = \frac{a k_{\phi}}{D_{r0}}.$$

The minimization of the functional $J(W_a)$ given by equation (5) requires

$$\frac{\partial J(W_a)}{\partial A_i} = 0, \quad i = 0, 1, \dots, m.$$
(6)

This leads to a system of homogeneous equations in A_i , i = 0, 1, ..., m whose non-trivial solution leads to the frequency equation

$$|A - \Omega^2 B| = 0, (7)$$

where $A = [a_{ij}]$ and $B = [b_{ij}]$ are square matrices of order m + 1 and

$$a_{ij} = \int_{0}^{1} (1 - \alpha R)^{3} \left[W_{i}''W_{j}'' + 2v_{\theta}W_{i}''\left(\frac{W_{j}'}{R} - \frac{n^{2}W_{j}}{R^{2}}\right) + p^{2}\left(\frac{W_{i}'}{R} - \frac{n^{2}W_{i}}{R^{2}}\right)\left(\frac{W_{j}'}{R} - \frac{n^{2}W_{j}}{R^{2}}\right) + n^{2}D_{k0}\left(\frac{W_{i}'}{R} - \frac{W_{i}}{R^{2}}\right)\left(\frac{W_{j}'}{R} - \frac{W_{j}}{R^{2}}\right) + K_{f}W_{i}W_{j}\right]R\,dR + KW_{i}(1)\,W_{j}(1) + K_{\phi}W_{i}'(1)\,W_{j}'(1)$$
(8)

and

$$b_{ij} = \int_0^1 (1 - \alpha R) W_i W_j R \, \mathrm{d}R.$$
(9)

As each deflection function W_i has to satisfy the boundary conditions [33, p. 14], we have

$$K_{\phi} \frac{dW_{i}(1)}{dR} = -(1-\alpha)^{3} \left[\frac{d^{2}W_{i}}{dR^{2}} + v_{\theta} \left(\frac{1}{R} \frac{dW_{i}}{dR} - n^{2} \frac{W_{i}}{R^{2}} \right) \right]_{R=1},$$
(10)

$$KW_{i}(1) = (1 - \alpha)^{3} \left[\frac{\mathrm{d}}{\mathrm{d}R} \left(\frac{\mathrm{d}^{2} W_{i}}{\mathrm{d}R^{2}} + \frac{1}{R} \frac{\mathrm{d}W_{i}}{\mathrm{d}R} - n^{2} \frac{W_{i}}{R^{2}} \right) - \frac{1}{2} D_{k0} \left(\frac{1}{R} \frac{\mathrm{d}W_{i}}{\mathrm{d}R} - \frac{W_{i}}{R^{2}} \right) \right]_{R=1}.$$
 (11)

Substituting equation (4) in equations (10) and (11), we get

$$\alpha_i = \frac{S_i u_i - s_i U_i}{Q_i s_i - S_i q_i}, \qquad \beta_i = \frac{q_i U_i - Q_i u_i}{Q_i s_i - S_i q_i}$$

where

$$\begin{split} &Q_i = K_{\phi} \left(2i+n+2\right) + (1-\alpha)^3 \left\{(2i+n+2)(2i+n+1) + v_{\theta}(2i+n+2-n^2)\right\}, \\ &S_i = K_{\phi} \left(2i+n+p-1\right) + (1-\alpha)^3 \left\{(2i+n+p-1)(2i+n+p-2) + v_{\theta}(2i+n+p-1-n^2)\right\}, \\ &U_i = K_{\phi} \left(2i+n-2\right) + (1-\alpha)^3 \left\{(2i+n-2)(2i+n-3) + v_{\theta}(2i+n-2-n^2)\right\}, \\ &q_i = K - (1-\alpha)^3 \left\{(2i+n+2)(2i+n+1)^2 - (1+n^2)(2i+n+2) + 2n^2 - \frac{D_{k0}}{2}(2i+n+1)\right\}, \\ &s_i = K - (1-\alpha)^3 \left\{(2i+n+p-1)(2i+n+p-2)^2 - (1+n^2)(2i+n+p-1) + 2n^2 - \frac{D_{k0}}{2}(2i+n+p-1) + 2n^2 - \frac{D_{k0}}{2}(2i+n+p-2)\right\}, \\ &u_i = K - (1-\alpha)^3 \left\{(2i+n-2)(2i+n-3)^2 - (1+n^2)(2i+n-2) + 2n^2 - \frac{D_{k0}}{2}(2i+n-3)\right\}. \end{split}$$

$$= \mathbf{K} - (1-\alpha) \left\{ (2i+n-2)(2i+n-3) - (1+n)(2i+n-2) + 2n - \frac{2}{2}(2i+n-3) \right\}$$

4. NUMERICAL RESULTS

The frequency equation (7) has been solved by hybrid secant method for the first two modes of vibrations corresponding to n = 0-2 to investigate the effect of elastic foundation parameter K_f (= 0.00 (0.01) 0.05) on the natural frequencies for various values of rigidity ratio E_{θ}/E_r (= 0.5, 0.75, 1.00, 5.00), taper parameter α (= 0, ± 0.3) and flexibility parameter K_{ϕ} (= 0, 10, $10^{20} \cong \infty$). The case of boundary conditions, i.e., free, simply supported and clamped are obtained by proper choice of K and K_{ϕ} . The shear modulus D_{k0} and Poisson's ratio v_{θ} of the plate have been fixed as 1.4 and 0.3 respectively.

						$K_f = 0.0$	01							
	$\alpha = -0.3$							$\alpha = 0.3$						
K_{ϕ}/p^2	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00		
	Ω	01	Ω	10	Ω	20	Ω	01	Ω	10	Ω	20		
00 10 10 ²⁰	9·0357 9·0482 9·0503	9·9051 9·9063 9·9069	8·9070 9·4594 9·6800	9·7477 10·3753 10·7344	10·1343 11·7431 12·6705	13·8136 16·7948 18·8936	10·9760 11·0419 11·0457	12·1000 12·1126 12·1140	11·3682 11·5195 11·5344	12·4437 12·6313 12·6550	12·1111 12·8750 12·9760	14·3072 15·9313 16·1782		
	Ω_{02}		Ω_{11}		Ω_{21}		Ω_{02}		Ω_{11}		Ω_{21}			
00 10 10 ²⁰	12·2189 16·2997 18·2949	21·7626 25·0305 27·3166	24·2362 29·8242 33·6980	32·5838 37·4765 41·5600	39·3425 45·1584 50·4100	55·9924 62·2318 68·9469	12·9670 15·0204 15·2759	18·1344 20·5529 20·9230	20·0247 24·4219 25·0927	24·6811 29·0380 29·7921	29·4504 35·0655 36·1010	39·4513 46·1437 47·4734		
						$K_f = 0.0$	2							
	Ω_{01}		Ω_{01} Ω_{10}		Ω_{20}		Ω_{01}		$arOmega_{10}$		Ω_{20}			
00 10 10 ²⁰	12·7534 12·7863 12·7920	14·0016 14·0051 14·0068	12·5948 13·0143 13·1855	13·7842 14·2516 14·5254	13·4665 14·7323 15·4920	16·8607 19·3903 21·2439	15·3865 15·5434 15·5539	17·0611 17·0951 17·0990	16·0614 16·1324 16·1394	17·5860 17·6864 17·6992	16·6763 17·1967 17·2666	19·0800 20·2858 20·4731		
	Ω	02	Ω	11	Ω	21	Ω	02	Ω	11	Ω	21		
00 10 10 ²⁰	15·3338 18·7740 20·5490	23·9706 26·9935 29·1415	25·9152 31·2128 34·9430	34·0900 38·8005 42·7668	40·3696 46·0763 51·2401	56·8692 63·0253 69·6691	17·1872 18·6113 18·8009	21·8721 23·8327 24·1403	22·8696 26·7670 27·3726	27·4962 31·4305 32·1208	31·4776 36·7548 37·7387	41·2872 47·7067 48·9886		

TABLE 1

Frequency parameter Ω as a function of flexibility, taper and orthotropy parameters for circular plate: $v_{\theta} = 0.3$, K = 0

415

						$K_f = 0.0$	1						
			$\alpha =$	-0.3			$\alpha = 0.3$						
K_{ϕ}/p^2	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	
	Ω	00	Ω	10	Ω	Ω_{20}		00	Ω_{10}		\varOmega_{20}		
00 10 10 ²⁰	9·7232 9·8746 9·9076	10·6671 10·6926 10·7058	10·4759 10·6809 10·7675	11·2347 11·5750 11·7780	11·9039 13·0015 13·6669	15·5090 17·9374 19·7148	13·3530 13·4193 13·4337	14·5749 14·5869 14·5931	13·7639 13·9351 14·0079	14·8817 15·1527 15·3160	14·8498 15·7565 16·3186	18·2775 20·3892 21·9781	
	Ω_{01}		Ω_{11}		Ω_{21}		Ω_{01}		Ω_{11}		Ω_{21}		
00 10 10 ²⁰	13·5908 16·9219 18·6641	22·5808 25·5255 27·6272	24·8975 30·2148 33·9160	33·0971 37·8061 41·7492	39·7446 45·4408 50·5669	56·2722 62·4386 69·0596	16·3718 19·2950 20·8659	24·7039 27·4464 29·4284	26·5284 31·5837 35·1519	34·5771 39·1174 42·9499	40·7782 46·3525 51·3940	57·1445 63·2294 69·7805	
						$K_{f} = 0.0$	2						
	Ω_{c}	00	Ω_{10}		Ω_{20}		Ω_{00}		$arOmega_{10}$		Ω_{20}		
00 10 10 ²⁰	11·1275 11·6202 11·6762	12·6215 12·8493 12·8806	12·8963 12·9210 12·9239	14·0165 14·0165 14·0165	14·3935 14·5708 14·5963	16·8849 17·6721 17·7975	15·4168 15·8376 15·8887	17·3419 17·5540 17·5840	17·0846 17·1198 17·1240	18·6667 18·6684 18·6687	18·3631 18·4832 18·5005	21·0622 21·6699 21·7671	
	Ω_{01}		Ω	11	Ω	21	Ω	01	Ω	11	Ω_2	21	
00 10 10 ²⁰	15·5727 16·3708 16·4888	20·1684 21·6600 21·9066	21·8142 25·2398 25·7847	26·1721 29·7721 30·4123	30·6678 35·6638 36·5944	40·3565 46·6078 47·8470	19·2533 19·7994 19·8818	23.6337 24.8350 25.0372	24·5039 27·5359 28·0264	28·8746 32·1245 32·7096	32·6243 37·3323 38·2163	42·1600 48·1587 49·3532	

TABLE 2 Frequency parameters for circular plate: $v_{\theta} = 0.3$, K = 10

						$K_f = 0.0$	1								
	$\alpha = -0.3$							$\alpha = 0.3$							
K_{ϕ}/p^2	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00	0.50	5.00			
	Ω	00	Ω	10	Ω	20	Ω	00	Ω	10	Ω	20			
00 10 10 ²⁰	10·4191 12·9034 14·9266	14·6542 17·3458 20·2774	18·1823 22·0610 26·5462	23·4406 27·2231 32·3360	29·3023 33·5063 39·8085	43·5781 48·1565 56·3544	11·2034 12·4444 12·6935	13·4338 15·2181 15·6580	15·4222 18·6936 19·5305	18·1611 21·7140 22·7248	21·9648 26·5558 27·9545	30·0797 35·7293 38·1401			
	Ω_{01}		Ω_{11}		Ω_{21}		Ω_{01}		Ω_{11}		Ω_{21}				
00 10 10 ²⁰	33·3190 37·6803 44·8201	47·1553 51·7201 60·5192	55·7164 60·3736 70·2448	66·6074 71·2990 82·1452	78·0891 82·9972 95·0433	101·7802 106·5747 120·5582	25·3564 30·5628 32·2471	34·5263 40·6169 42·8735	40·7906 47·4109 50·0784	47·5216 54·5416 57·5769	56·0747 63·6078 67·0872	70·9581 79·0779 83·4146			
						$K_{f} = 0.0$	2								
	Ω_{00}		Ω_{10}		Ω_{20}		$arOmega_{00}$		Ω_{10}		Ω_{20}				
00 10 10 ²⁰	13·9982 15·9649 17·6705	17·8464 20·1385 22·7369	20·3754 23·9161 28·1250	25·5000 29·0281 33·8870	30·7040 34·7344 40·8597	44·7017 49·1779 57·2293	15·4363 16·2975 16·4766	17·8149 19·1384 19·4764	18·8811 21·5850 22·3006	21·7432 24·7388 25·6163	24·5651 28·7067 30·0016	32·4485 37·7163 39·5888			
	Ω	01	Ω	11	Ω	21	Ω	01	Ω	11	Ω	21			
00 10 10 ²⁰	34·5947 40·2968 45·7822	48·2299 38·8148 61·3835	56·4813 61·0790 70·8542	67·3714 72·0130 82·7679	78·8239 83·5043 95·4438	102·3809 107·0908 120·9037	27·5641 32·3909 33·9574	36·5223 42·3168 44·4794	42·2149 48·6371 51·2354	48·9977 55·8272 58·7904	57·1007 64·5105 67·9633	71·9198 80·0154 84·2617			

TABLE 3 Frequency parameters for circular plate: $v_{\theta} = 0.3$, $K = 10^{20}$

417

Figure 2. Fundamental frequency parameter for:; $E_r/E_{\theta} = 0.75$; ------; $E_r/E_{\theta} = 1.00$, and ----; $E_r/E_{\theta} = 5.00$. Simply supported plate for $\alpha = -0.3$: *--*-*, n = 0; $\triangle - \triangle - \triangle - \triangle$, n = 1; $\bullet - \bullet - \bullet - \bullet$, n = 2.

Figure 3. Fundamental frequency parameter for:; $E_r/E_\theta = 0.75$; ------; $E_r/E_\theta = 1.00$, and ----; $E_r/E_\theta = 5.00$. Simply supported plate for $\alpha = 0.3$: *--*-*, n = 0; Δ -- Δ -- Δ -- Δ , n = 1; Θ - Θ - Θ - Θ - Θ , n = 2.

Figure 4. Fundamental frequency parameter for:; $E_r/E_{\theta} = 0.75$; ------; $E_r/E_{\theta} = 1.00$, and ----; $E_r/E_{\theta} = 5.00$. Clamped plate for $\alpha = -0.3$: *--*-*, n = 0; $\Delta - \Delta - \Delta - \Delta$, n = 1; $\Theta - \Theta - \Theta - \Theta$, n = 2.

Figure 5. Fundamental frequency parameter for:; $E_r/E_\theta = 0.75$; ------; $E_r/E_\theta = 1.00$, and -----; $E_r/E_\theta = 5.00$. Clamped plate for $\alpha = 0.3$: *--*-*, n = 0; $\Delta - \Delta - \Delta - \Delta - \Delta$, n = 1; $\bullet - \bullet - \bullet - \bullet - \bullet$, n = 2.

Figure 6. Normalised transverse deflection W_{norm} versus radius vector R for $v_{\theta} = 0.3$, $E_{\theta}/E_r = 5.0$, $\alpha = 0.3$, SS (------) and CL (------) plates vibrating in fundamental mode. Mode I (LVT): $K_f = 0.00$.

Figure 7. Normalised transverse deflection W_{norm} versus radius vector R for $v_{\theta} = 0.3$, $E_{\theta}/E_r = 5.0$, $\alpha = 0.3$, SS (------) and CL (-----) plates vibrating in fundamental mode. Mode I (LVT): $K_f = 0.01$.

5. DISCUSSION

The frequency equation (7) is solved for various values of rigidity ratio E_{θ}/E_r (= 0.5, 0.75, 1.0, 5.0), taper parameter α (= 0.0, \pm 0.3), flexibility parameters K_{ϕ} (= 0, 10, $10^{20} \cong \infty$),

	Simply supported edge for $K_f = 10$							Simply supported edge for $K_f = 20$						
$lpha/\Omega$	Ω_{00}	Ω_{01}	$arOmega_{10}$	\varOmega_{11}	$arOmega_{20}$	Ω_{21}	Ω_{00}	Ω_{01}	\varOmega_{10}	$arOmega_{11}$	\varOmega_{20}	\varOmega_{21}		
	6·30 [†]	33·12 [†]	15.91*	53·93 [†]	29.06*	78·35 [†]	12.62 [†]	44·69 [†]	24·58 [†]	68·13 [†]	39.76†	95·33 [†]		
-0.2	6.2992	33.1186	15.9140	53.8956	29.0618	78·1215	12.5988	44.6540	24.5677	67.9236	39.7539	94.4479		
	6·10 [†]	31.53 [†]	$15 \cdot 10^{\dagger}$	51·29 [†]	27.46^{\dagger}	74·29 [†]	11.89†	42·38 [†]	23·16 [†]	64·58 [†]	37.47†	90·10 [†]		
- 0.1	6.0947	31.5238	15.1015	51·2711	27.4543	74·1936	11.8681	42.3497	23.1497	64·4819	37.4650	89.6064		
	5.90†	29.94*	14·29 [†]	48·63 [†]	25.85	70·26 [†]	11.18^{+}	40.06	21.74^{\dagger}	61.58^{+}	35.17	84·94 [†]		
0.0	5.8983	29.9220	14·2899	48·6153	25.8429	70.2211	11.1518	40.0218	21.7257	60.9928	35.1626	84·7008		
	5.72†	28·35 [†]	13.48	45·95†	24·23 [†]	66·22 [†]	10.48^{+}	37.74†	20.31	57·49†	32.86	79·83 [†]		
0.1	5.7111	28.3050	13.4755	45.9231	24·2269	66.1965	10.4532	37.6663	20.2954	57.3569	32.6830	79.6540		
	5·54†	26.74	12.66 [†]	43·26 [†]	22·61 [†]	62·15 [†]	9·80 [†]	35.42*	18.87^{+}	53·92†	30.52	74·72†		
0.2	5.5342	26.6718	12.6580	43.1880	22.6058	62.1101	9.7762	35.2782	18.8590	53.8397	30.5092	74.6511		
			Free edge	for $K_f = 10$			Free edge for $K_f = 20$							
		10.25		22·77 [†]	6·58 [†]	39.34		10.68		22.96†	7·20 [†]	39·46 [†]		
-0.2	2.9702	10.2576	2.9361	22.7751	6.4865	39.3403	4.2002	10.6880	4.1522	22.9711	7.1154	39.4533		
		9.92†		21.76^{\dagger}	6·39†	37.37*		10.39		21.98*	7·07 [†]	37.62*		
-0.1	3.0618	9.9243	3.0429	21.7659	6.3016	37.3639	4.3299	10.3905	4.3033	21.9809	6.9950	37.4897		
		9.60^{+}		20.76^{\dagger}	6·21 [†]	35.39†		10.11^{+}		21.00^{\dagger}	6·97†	35.53†		
0.0	3.1623	9.6044	3.1623	20.7554	6.1391	35.3841	4.4721	10.1116	4.4721	20.9949	6.9057	35.5251		
		9·30 [†]		19·75 [†]	6.07^{+}	33·41 [†]		9·85 [†]		20.01	6·91†	33·57 [†]		
0.1	3.2731	9.3008	3.2969	19.7474	6.0042	33.4009	4.6287	9.8557	4.6625	20.0150	6.8539	33.5604		
		9·00 [†]		18·73 [†]	5·95 [†]	31.43		9·61 [†]		19.03*	6·89†	31.61*		
0.2	3.3960	9.0174	3.4502	18.7424	5.9032	31.4144	4·8016	9.6291	4.8793	19.0444	6.8475	31.5969		

Comparison of frequency parameter Ω for isotropic circular plate of linearly varying thickness resting on elastic foundation for first two modes: $v_{\theta} = 0.33$

TABLE 4

[†]Values are taken from reference [9].

K_{ϕ}/Ω	Ω_{00}	Ω_{01}	Ω_{02}	$arOmega_{10}$	$arOmega_{11}$	Ω_{12}	Ω_{20}	\varOmega_{21}	Ω_{22}
					K = 0				
		9·003 [†]	38·443 [†]		20·475 [†]	59·812 [†]	5·358 [†]	35.260†	84·368 [†]
0		9.0031	38.4432		20.4746	59.8116	5.3583	35.2601	84.3662
		13·513 [†]	45·764 [†]		26.298	$68 \cdot 068^{\dagger}$	8.020^{+}	41.844^{\dagger}	93·256 [†]
10		13.5129	45.7643	2.7735	26.2982	68·0681	8.0497	41.8438	93.2569
		14·539 [†]	48·746 [†]		28·126 [†]	72.168^{\dagger}	8·693 [†]	44·483 [†]	98·431 [†]
10 ²		14·5388	48.7457		28.1262	72.1675	8.6933	44.4832	98.4336
		14·682 [†]	49·218 [†]		28.399	72.860^{\dagger}	8·785 [†]	44·904 [†]	99·359 [†]
∞		14.6820	49.2159	3.0948	28.3988	72.8781	8.7849	44.9031	99.3466
					$K = \infty$				
	4·935 [†]	29.720*	74·156 [†]	13.898*	48·479 [†]	102·772 [†]	25.613*	70.117*	134·290 [†]
0	4.9351	29.7200	74.1560	13.8982	48.4789	102.7733	25.6133	70.1170	134.2978
	8·752 [†]	35·218 [†]	80.685	18.543	54·516 [†]	109.650^{\dagger}	30·848 [†]	76·5442 [†]	141.441*
10	8.7519	35·2190	80.6869	18.5438	54.5164	109.6529	30.8481	76.5442	141.4431
	10.019*	39·029 [†]	87·488 [†]	20.858	59·710 [†]	117.925 [†]	34·226 [†]	83·050 [†]	151.126*
10^{2}	10.0192	39.0288	87.4900	20.8587	59.7102	117.9353	34.2259	83·0501	151.1094
	10.216^{\dagger}	39·771 [†]	89·103 [†]	21.260^{\dagger}	60.829*	120.077*	34·877 [†]	84·584 [†]	153.830*
∞	10.2158	39.7711	89.1041	21.2604	60.8287	120.0792	34.8770	84.5826	153.8151

TABLE 5 Comparison of frequency parameter Ω for uniform isotropic circular plate for $v_{\theta} = 0.3$ and different values of K_{ϕ}

[†]Values are taken from reference [26, 27].

TABLE 6

		SS—plate		CL—plate					
n/Ω_{ni}	Ω_{n0}	Ω_{n1}	Ω_{n2}	Ω_{n0}	Ω_{n1}	Ω_{n2}			
n = 0	4·9352 [†]	29·7222 [†]	74·1938†	10·2159 [†]	39·7766 [†]	89·1708 [†]			
	4·9352 [‡]	29·7200 [‡]	74·1961‡	10·2158 [‡]	39·7711 [‡]	89·1041 [‡]			
	4·9352	29·7200	74·1961	10·2158	39·7711	89·1041			
n = 1	13·8983 [†]	48·4867 [†]	102·8465 [†]	21·2611 [†]	60.8441^{\dagger}	120·19581 [†]			
	13·8982 [‡]	48·4789 [‡]	102·7734 [‡]	21·2604 [‡]	60.8287^{\ddagger}	120·0793 [‡]			
	13·8982	48·4789	102·7734	21·2604	60.8287	120·0793			
<i>n</i> = 2	25·6145 [†]	70·1404†	134·4588†	34·8799 [†]	84·6236 [†]	154·0564†			
	25·6133 [‡]	70·1170‡	134·4529‡	34·8770 [‡]	84·5827 [†]	153·8151‡			
	25·6133	70·1170	134·4529	34·8770	84·5827	153·8151			

Comparison of frequency parameter Ω with the exact solution and that obtained by finite element methods

[†]Taken from reference [34].

[‡]Taken from reference [33].

 $K (=0, 10, 10^{20} \cong \infty)$, foundation parameter $K_f (=0.0(0.01)0.05)$ and nodal diameter n = 0-2. The numerical results are presented in Tables 1–3 and Figures 2–7. Table 1 gives the values of frequency parameter Ω for different values of rigidity ratio E_{θ}/E_r , flexibility parameter K_{ϕ} and foundation parameter $K_f = 0.01, 0.02$ for $\alpha = \pm 0.3$ for first two modes of vibration corresponding to n = 0-2, respectively, when the stiffness of translational spring K = 0.0. The free edge classical boundary condition corresponds to flexibility parameter $K_{\phi} = 0.0$. The frequency parameter Ω is found to increase with the increasing values of rigidity ratio E_{θ}/E_r as well as flexibility parameter K_{ϕ} , keeping all other plate parameters fixed. It increases further for higher modes of antisymmetric modes of vibrations. The effect of flexibility parameter K_{ϕ} and the rigidity ratio are observed to be more pronounced for nodal diameter n = 2. It can also be noticed here that the frequency parameter increases with the increase in foundation parameter K_{f} , other plate parameters being fixed. A similar behaviour is observed in the second mode of vibration except for the fact that the frequency parameter Ω is greater as compared to the foundamental mode. The results show that the frequency parameter Ω for a centrally thinner plate ($\alpha < 0$) is less than that for a centrally thicker plate ($\alpha > 0$) for small values of foundation parameter K_f , but if the nodal diameter n, or flexibility parameter K_{ϕ} or rigidity ratio or mode of vibration increases, the effect of taper on frequency parameters is observed to be just the reverse. Table 2 presents the frequency parameter Ω for K = 10, other plate parameter values being same as in Table 1. The table shows that the frequency parameter is further increased with the increase in stiffness of the translational spring parameter K. The frequency parameter Ω for clamped plate ($K_{\phi} = 10^{20}$ and $K = 10^{20}$) is greater than that for the simply supported plate ($K_{\phi} = 0$ and $K = 10^{20}$), presented in Table 3. The effect of elastic foundation on frequency parameter for the simply supported plate is greater than that for the clamped plate, but lesser than that for the free edge plate.

Figure 2 is the plot for frequency parameter Ω versus foundation parameter K_f for different values of rigidity ratio E_{θ}/E_r (= 0.75, 1, 5.0) for a centrally thinner ($\alpha = -0.3$) simply supported (SS) plate. The graph shows that the frequency parameter Ω increases with foundation parameter K_f . The effect of rigidity ratio on frequency parameter Ω is quite

appreciable for increasing values of nodal diameter n. The rate of increase of frequency parameter with the increase in foundation parameter for a radially stiffened plate $(E_{\theta}/E_r = 0.75)$ is more than that for a circumferentially stiffened plate $(E_{\theta}/E_r = 5.0)$. The frequency parameter Ω increases almost linearly for n = 2. Figure 3 is the plot for frequency parameter Ω versus foundation parameter K_f for a centrally thicker plate ($\alpha = 0.3$) for the simply supported edge vibrating in fundamental mode for nodal diameters n = 0-2. The graphs 2 and 3 show that the rate of increase of frequency parameter for a centrally thinner plate is less than that for a centrally thicker plate. Figures 4 and 5 show the frequency parameter Ω for different values of foundation parameter K_f for a clamped (CL) plate vibating in fundamental mode for n = 0-2 for $\alpha = -0.3$ and 0.3 respectively. The frequency parameter Ω increases with the increase in K_f and is greater than that for a simply supported plate, other plate parameters being fixed. The effect of increase of nodal diameter on frequency parameter for a radially stiffened plate $(E_{\theta} < E_r)$ is less than for a circumferencially stiffened clamped plate ($E_{\theta} > E_r$). The normalized transverse deflection W_{norm} is presented in graphs 6 and 7 for simply supported (----) and clamped (----) plates; taper parameter $\alpha = 0.3$ for foundation parameter $K_f = 0.00$ and 0.01 for LVT plates. The transverse deflection is maximum at the centre for both the plates. It is seen that transverse deflection for axisymmetric mode (n = 0) is greater than that for antisymmetric mode (n = 1). The figures also show that the transverse deflection decreases as the foundation parameter K_f increases. Further, it can be noticed here that the transverse deflection for the simply supported plate is greater than that for the clamped plate for the corresponding values of plate parameters.

A comparison of our results with those available in the literature by Laura *et al.* [9], Pardoen [34] and Azimi [18, 26] shows an excellent agreement and is reported in Tables 4–6 respectively.

REFERENCES

- 1. S. G. LEKHNITSKII 1985 Anisotropic plates. New York: Breach Science Publishers Inc.
- 2. S. CHONAN 1980 Journal of Sound and vibration 71, 117–127. Random vibration of an initially stressed thick plate on an elastic foundation.
- 3. R. SARCAR 1980 *Indian Journal of Pure and Applied Maths* 11, 252–255. Fundamental frequency of vibration of a rectangular plate on a non linear elastic foundation.
- 4. U. S. GUPTA and R. LAL 1979 *Journal of Aerosociety of India* **31**, 97–102. Axisymmetric vibration of linearly tapered annular plates resting on an elastic foundation: by Splines method of solution.
- 5. J. S. TOMER, D. C. GUPTA and V. K. KUMAR 1988 *Journal of Engineering Design* 1, 49–54. Free vibration of non homogenious circular plates of variable thickness resting on an elastic foundation.
- 6. B. BHATTACHARYA 1977 *Journal of Sound and Vibration* **54**, 464–467. Free vibration of plates on Vlasov's foundation.
- 7. U. S. GUPTA, R. LAL and S. K. JAIN 1990 *Journal of Sound and Vibration* 139, 503–513. Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness.
- 8. U. S. GUPTA and A. H. ANSARI 1998 *Journal of Sound and Vibration* **213**, 429–445. Free vibration of polar orthotropic circular plates of variable thickness with elastically restrained edge.
- 9. P. A. A. LAURA and R. H. GUTIERREZ 1991 *Journal of Sound and Vibration* 144, 149–167. Free vibration of a solid circular plate of linearly varying thickness and attached to a Winkler type foundation.
- 10. K. M. LIEW, J.-B. HAN, M. XIAO and H. DO 1996 *International Journal of Mechanical Science* **38**, 405–421. Differential quadrature method for Mindlin plates on Winkler foundation.
- 11. Y.-S. SHIH, P. T. BLOTTER 1993. *Journal of Sound and Vibration* 167, 433–459. Non linear vibration analysis of arbitrary laminated thin rectangular plates on elastic foundation.
- 12. JI. WANG 1992 Journal of Sound and Vibration 159, 175–181. Free vibration of stepped circular plates on elastic foundations.

- 13. U. S. GUPTA, R. LAL, C. P. VERMA 1987 *Indian Journal of Pure and Applied Mathematics* 18, 269–281. Vibration and buckling of parabolically tapered polar orthotropic annular plates on an elastic foundation.
- 14. U. S. GUPTA, R. LAL and C. P. VERMA 1986 *Journal of Sound and Vibration* 109, 423–434. Buckling and vibration of polar orthotropic annular plates on an elastic foundation subjected to hydrostatic peripheral loading.
- 15. U. S. GUPTA, R. LAL and S. K. JAIN 1993 *Indian Journal of Pure and Applied Maths* 24, 607–631. Vibration and buckling of parabolically tapered polar orthotropic plates on elastic foundation.
- 16. U. S. GUPTA, R. LAL and R. SAGAR 1994 *Indian Journal of Pure and Applied Maths* **25**, 1317–1326. Effect of elastic foundation on axisymmetric vibrations of polar orthotropic Mindlin circular plate.
- 17. U. S. GUPTA, R. LAL and S. K. JAIN 1991 *Journal of Sound and Vibration* 147, 423–434. Buckling and vibration of polar orthotropic circular plate of linearly varying thickness resting on elastic foundation.
- 18. S. ARUL JAYACHANDRAN and C. V. VAIDYANATHAN 1995 *Journal of Computers and Structures* 52, 239–246. Post critical behaviour of biaxially compressed plates on elastic foundation.
- 19. K. M. LIEW and K. Y. LAM 1991 *Transactions of American Society of Mechanical Engineers Journal of Vibration and Acoustics* **113**, 182–186. A set of orthogonal plate functions for vibration analysis of regular polygonal plates.
- 20. K. Y. LAM and K. M. LIEW 1992 *Computational Mechanics* 9, 113–120. A numerical model based on orthogonal plate functions for vibration of ring supported elliptical plates.
- 21. K. Y. LAM, K. M. LIEW and S. T. CHOW 1992 *Journal of Sound and Vibration* **154**, 261–269. Use of two dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates.
- 22. K. M. LIEW 1993 International Journal of Solids and Structures 30, 337-347. Treatments of over-restrained boundaries for doubly connected plates of arbitrary shape in vibration analysis.
- 23. K. M. LIEW and K. Y. LAM 1993 *Transactions of American Society of Mechanical Engineers. Journal of Applied Mechanics* **60**, 208–210. Transverse vibration of solids circular plates continuous over multiple concentric annular supports.
- 24. C. W. LIM and K. M. LIEW 1995 Journal of Engineering Mechanics, American Society of Civil Engineers 121, 203–213. Vibration of perforated plates with rounded corners.
- 25. K. M. LIEW and Y. K. SUM 1998 Journal of Engineering Mechanics, American Society of Civil Engineers 124, 184–192. Vibration of plates having orthogonal straight edges with clamped boundaries.
- 26. S. AZIMI 1998 *Journal of Sound and Vibration* **120**, 19–35. Free vibration of circular plates with elastic edge supports using the receptance method.
- 27. S. AZIMI 1988 Journal of Sound and Vibration 120, 37–52. Free vibration of circular plates with elastic or rigid interior support.
- 28. C. S. KIM and S. M. DICKINSON 1990 *Journal of Sound and Vibration* **143**, 171–179. The flexural vibration of thin isotropic and polar orthotropic annular and circular plates with elastically restrained peripheries.
- 29. R. H. GUTIERREZ, E. ROMANELLI and P. A. A. LAURA 1996 *Journal of Sound and Vibration* 195, 391–399. Vibration and elastic stability of thin circular plates with variable profile.
- L. E. LUISONI, P. A. A. LAURA and R. GROSSI 1977 Journal of Sound and Vibration 54, 62–466. Antisymmetric modes of vibration of a circular plate elastically restrained against rotation and of linearly varying thickness.
- 31. Y. NARITA and A. W. LEISSA 1980. *Journal of Sound and Vibration* **70**, 103–116. Transverse vibration of simply supported circular plates having partial elastic constraints.
- 32. J. H. CHUNG and T. Y. CHUNG 1993 Journal of Sound and Vibration 163, 151–163. Vibration analysis of orthotropic Mindlin plates with edge elastically restrained against rotation.
- 33. A. W. LEISSA 1969 Vibration of Plates. NASA, 160-sp.
- 34. G. C. PARDOEN 1978 Computer and Structure 9, 89–95. Asymmetric vibration and stability of circular plates.

APPENDIX A: NOMENCLATURE

 r, θ polar co-ordinates of a point in the mid-plane of the plate a radius of the circular plate

426	U. S. GUPTA AND A. H. ANSARI
R	r/a, non-dimensional radius vector
t	time
W	$w(r, \theta, t)$ transverse displacement function
$W(R, \theta)$	$W(R)\cos n\theta$
W_{norm}	W/W_{max}
E_r, E_{θ}	Young's moduli of elasticity along r and θ directions respectively
$G_{r\theta}$	shear modulus
v_r, v_{θ}	the Poisson ratio defined as strain in tangential and radial directions respectively
h_0	non-dimensional thickness of the plate at the centre
h W	h(r), thickness of the plate
W_i	snape function
<i>w_i</i> , <i>w_i</i>	$\frac{\mathrm{d}W_i}{\mathrm{d}W_i}$, $\frac{\mathrm{d}^2W_i}{\mathrm{d}^2}$
	$dR' dR^2$
α	taper constant
α_i, β_i	constants
D_r, D_{θ}	$E_r h^3 / 12(1 - v_r v_{\theta}), E_{\theta} h^3 / 12(1 - v_r v_{\theta})$, flexural rigidities along r and θ directions
D	respectively
$D_{r\theta}$	$G_{r\theta}h^{s}/12$, shear rigidity
D_k	$\frac{4D_{r\theta}}{E^{13}/12}$
D_{r0}	$\frac{E_r n_0^2}{12} (1 - v_r v_\theta)$
D_{k0}	D_k/D_{r0}
$o_r, o_{\theta}, o_{r\theta}$ M M M	radial, tangential and shear momenta
$T_r, M_{\theta}, M_{r\theta}$	maximum kinetic energy
I max	maximum strain energy of the plate
k max	stiffness of the spring against translation
k.	stiffness of the spring against rotation
k_{c}	foundation modulus
\vec{K}, \vec{K}_{\star}	$a^{3}k/D_{\mu a}$, $a k_{\mu}/D_{\mu a}$, flexibility of the springs
K _f	a^4k_f/D_{re} , foundation modulus
ρ	density of the plate material
ω	circular frequency in rad/s
Ω^2	$a^4 \rho \omega^2 h_0 / D_{r\theta}$, frequency parameter
A_i	constants
Ω_{nj}	frequency parameter in <i>j</i> th mode